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1. INTRODUCTION

In this article we present a large number of probability density

functions from 20 different families. They were found through an

extensive search of the statistical literature, with the intention of

listing distributions that arise in practical work. The purpose of

the collection was to use the exact percentage points of a typical

distribution to assess the accuracy of various methods of approximating

the density using four or more moments. The methods of approximation

were to fit Pearson curves or Johnson curves, using four moments in

each case, or to fit Cornish-Fisher expansions, using four or more

moments. Thus, we did not wish to use members of the Pearson system

themselves, or members of the Johnson system; this excludes the normal,

chi-squared, t, F, gamma and beta distributions.

For the purposes of the study, calculation of the exact significance

points, along with at least the first four moments, was necessary.

As many as three parameters could be varied for several of the families

of densities, giving rise to a large number of possible individual

distributions. The functions of the moments that we used to index the

distributions are:

* 2
113 114

and 82 =3 22 2
112 P12

where p are the central moments of the distribution. We chose the para-

meters to cover a fairly broad area of the (w'J7, 82) plane, subject to the

constraints VT < 2 and 82 < 14. The 395 distributions, from 20 different

families of distributions, are displayed in Figure 1, each family denoted by

a different letter of the alphabet. A remarkable feature of the large number

of distributions, which are naturally occurring densities, but a little off

U

' U* -. o " i 
°
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the mainstream of statistical work, is how many of them lie either on the

line of symmetry v' 1 
= 0, or are close to the chi-squared line (see Figure 1).

The results of the comparison of approximations will be presented

in a later report. In the meantime, this collection is documented as

it will be useful to other workers who wish to find representative

distributions with given AS1, 02 values. In section 2 the various

families and types of distributions, along with parameter values and

(,jI, 82) values, are described. Numerical methods for computation of

moments and cumulative distribution functions are discussed in section 3.

2. DESCRIPTION OF THE DISTRIBUTIONS

2.1 Noncentral Chi-squared Distributions (denoted by 'A' on Figure 1)

v

Let X - Z (Z +di ) 2 where the Zi are i.i.d. (independent and

identically distributed) N(O,l) and the di are constants. The

distribution of X depends on dl, d2, .. dv only through

v
Z E d 2 and is called the noncentral chi-squared distribution with

i-l

v degrees of freedom and non-centrality parameter X, denoted here

by X2(VA). Cumulants of all order exist, with Kcr - 2rl(v+r)(r-l):

(Johnson and Kotz (1970b, p. 134)). The cdf F(x) was evaluated using

the algorithm of Sheil and O'Muircheartaigh (1977). Parameters of

the fifteen X2(v,X) distributions used are shown in Table 1.

Vt
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Fixure 1
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Table 1. X2(,VA) Distributions

10 A 2 v A0 02

1.0 1.44 1.97 8.39 4.0 1.96 1.25 5.27

1.0 1.96 1.78 7.38 6.0 6.76 0.86 4.04

1.0 7.84 1.02 4.40 6.0 19.36 0.61 3.50

2.0 5.76 1.10 4.64 A6.0 31.36 0.50 3.33

3.0 0.16 1.63 6.96 8.0 6.76 0.80 3.91

3.0 3.24 1.23 5.13 12.0 6.16 0.71 3.72

3.0 7.84 0.93 4.18 120.0 36.00 0.41 3.23

2.2 Noncentral F distributions (denoted by 'B' on Figure 1)

Let Y1be distributed as XZ(v1,A), Y 2 be distributed as

x x2(v 2100) and suppose Yand Yare independent. Then

X-(Y /V M/(/V ) is said to have a noncentral F-distribution with

v1, v 2 degrees of freedom and noncentrality parameter A, denoted

here by F (v'v2 ,X). The first four central moments, given by Pearson

- and Tiku (1970), who set x /v1. are:
fr~~ N2 >2 ( ) ( 2)

v v2-2

2v v+v2-2) v
2 2+ UL + (v>4);2 v 1(v 2-2)2(v 2-4) l V2 -2j

8v2(v -2)(2v,+v-2) 6v it22v 2 13
-~ - 2 1 2 2 13 - 1 -- (iv-( 1 +v-

Yl v(v 2-2)3( 2-4)(v 2-6) 2 1+72-2 1v 2,, 2
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12v 2 (vl+V2-2)

v4 v1 (v2 -2)' (v2 -4) (v2 -6)-(v 2-8)

[(2(3vl+v2-2)(2v 1+v2 -2)+(V+v 2-2) (v2-2) (vl+2) }(1+49) +

3 3 Z4v2+lO)

2v 1 (3vl+2v2-4) (v2+10) 2+4v, (v2+10) t (v21 -) (v2 > 8).
(vl+v2-2)

The exact pdf f(x) (0 < x < m) and cdf F(x) are very complicated

and are not given here. Lachenbruch (1967) gives values of x for

m - .01, .025, .05, .10, .5, .90, .95, .975, .99, v1 - 1(1) 10, 15,

20(10)60, 120, v2 - 2(2)10(10)40, 60 and A - 1(1)10. The parameters

and significance points of the twenty-eight F(vl,v2,X) distributions

used are given in Table 2.

2.3 Noncentral t distributions (denoted by 'C' on Figure 1)

Let X - (Z+iS)/U01U, where Z is N(0,1), U is central chi-squared

with v degrees of freedom, 6 is a constant and Z and U are independent.

Then X has the noncentral t distribution with v degrees of freedom and

noncentrality parameter 6, denoted here by t(v,S). Hogben, Pinkham

and Wilk (1961) give coefficients to find the first four central

moments of t(v,6) for v - 2(1) 25(5)50, 60, 70, 80, 90, 100, 150,

200(100)1000. These appear as Table 28 in Pearson and Hartley (1972).

Merrington and Pearson (1958) give for the central moments of t(v,6):

S* /v/l2 r( (v-1))/r(v/2), where r(x) f f0t etdt;

U2 " v(l+6 )/(v-2) - u 2 (v > 2);

4 .. - .. . ... .: .. .. ... ..., ._ .-. • . .-'.. - - . .'- .. ..- .. . .. .. , . . .. ...-.... " ,
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3 (2 232  (v 3)

(3+66 +6 )Iv(v+l)62+3(3v-5)

U4 (v-2)(v-4) 1i (v-2)(v3) -3u (v > 4).

It should also be noted that t(v,6) has range (--,c).

The cdf for integral values of v can be expressed (Oven (1962,

p. 108)) as a finite sum involving the N(0,1) pdf and cdf and

Oven's T-function T(h,a) (see Owen (1962, p. 184)). This function is

defined by:

*a J f (-h2/2(1=
T(h,a) - 0+x 2 dx (--<h, a<-).

0

The algorithm of Cooper (1968) for computing Pr(t(v,S) < t), was used

with two changes. For computing the N(0,1) cdf the algorithm of

Hill (1973) was used. Also, the more accurate algorithm of Young and

Minder (1974) for computing T(h,a) was utilized (see also Hill (1978)

S.I and Thomas (1979)). The parameters of the 136 t(v,S) distributions used

-. are given in Table 3.

2.4 Quadratic Forms (denoted by 'D' on Figure 1)

Let Z1 9 Z2 . be independent N(0,1) random variables and

k
let Q(1,k) - X Xi Z,2 ' where X' - (Ll,A 2,...,Ak) is a vector whose

i-l

components are constants. The central quadratic form Q(X,k)

("central" is hereafter omitted) is a simple weighted sum of independent

chi-squared variables, each with one degree of freedom. Cumulants of

all orders are easily computed from (Johnson and Kotz (1970b, p. 153)):

k
* ~.r-l r

K r 2 (r-l)! Z X i
i-l

0

- *..-.

. o ... . , - . . . . o .- , ,. o ° . . .. - . . • o .: ," - . .. - . . - .' .° . , -. . . ° . .
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Owen (1962, pp. 182-183, 205-206) gives cumulative probabilities and

selected significance points for the cases k = 2,3. These are abridged

versions of the reuslts in Grad and Solomon (1955) and Solomon (1960).

Johnson and Kotz (1968) give significance points xa for a- .01, .025, .05,

.10, .25, .50, .75, .90, .95, .975, .99, .995, k-4,5. Owen choses X so

k k 2
that E Ix - 1, while Johnson and Kotz have E i k. Several

_i-i i-i

additional Q(X,k) distributions were also considered, with k - 5,6,7,

8,9,10 and 12. Cumulative probabilities were computed using the

algorithm of Sheil and O'Muircheartaigh (1977). Twenty distributions

from the Q(X,k) family were used, with parameters as given in Table 5.

2.5 z Distributions (denoted by 'E' on Figure 1)
1

Let z - . tn F, where F has the (central) F distribution with
2

VlV 2 degrees of freedom. Although z, used by Fisher (1924) in place

of F for purposes of approximation and tabulation, is a random

variable, we shall adhere to the convention of denoting it by a small

letter. This distribution will be noted here by z(v,,v2). Cumulants

of all orders are finite and are given by Johnson and Kotz (1970b, p.78)

as follows:

1
1"2 [tn(v2 /v1 ) + *((v/2) _(v2/2) ];

K r 2-r [(r-l)(v1/2) + (_l)r (r-1) (v2/2)],(r 2).

Computation of *(x) and iS'(x), the digama function and its deriv-

atives, is discussed in section 3.1.
S

0e.
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Table 3: t(v,tS) Distributions

B , v 6 O
V 1 2 "1 2 1 82

5 0.1 0.14 9.05 7 0.4 0.28 5.14 8 2.6 1.14 6.75
5 0.2 0.28 9.20 7 0.6 0.42 5.31 8 2.7 1.17 6.85

- ,5 0.3 0.41 9.45 7 0.7 0.49 5.42 8 3.0 1.24 7.14
5 0.4 0.54 9.79 7 0.8 0.55 5.54 8 3.1 1.26 7.23

*5 0.5 0.68 10.22 7 0.9 0.61 5.67 8 3.3 1.30 7.40
5 0.6 0.80 10.72 7 1.0 0.67 5.81 8 3.5 1.33 7.56
5 0.7 0.93 11.29 7 1.1 0.73 5.96 8 3.8 1.38 7.79
5 0.8 1.04 11.93 7 1.2 0.79 6.12 8 4.3 1.44 8.11
5 0.9 1.16 12.60 7 1.5 0.95 6.62 8 4.5 1.46 8.22
5 1.0 1.27 13.32 7 1.6 1.00 6.79 8 4.9 1.49 8.42
6 0.1 0.09 6.02 7 1.7 1.04 6.96 8 7.5 1.62 9.18
6 0.2 0.19 6.07 7 1.8 1.09 7.14 8 10.0 1.67 9.50
6 0.3 0.28 6.16 7 1.9 1.13 7.31 8 15.0 1.71 9.74
6 0.4 0.37 6.28 7 2.0 1.17 7.48 9 0.2 0.10 4.21
6 0.5 0.46 6.43 7 2.2 1.24 7.81 9 0.4 0.19 4.26
6 0.6 0.55 6.61 7 2.3 1.28 7.97 9 0.6 0.28 4.33

06 0.7 0.64 6.81 7 2.4 1.31 8.13 9 0.8 0.38 4.43
6 0.8 0.72 7.04 7 2.6 1.37 8.43 9 1.1 0.50 4.61
6 0.9 0.80 7.29 7 2.7 1.40 8.58 9 1.3 0.58 4.75
6 1.0 0.88 7.55 7 2.8 1.42 8.72 9 1.6 0.70 4.98
6 1.1 0.95 7.83 7 3.0 1.47 8.99 9 1.9 0.80 5.23
6 1.2 1.02 8.12 7 3.1 1.49 9.11 9 2.3 0.91 5.56
6 1.3 1.09 8.42 7 3.3 1.53 9.35 9 2.6 0.99 5.80
6 1.4 1.16 8.72 7 3.5 1.57 9.57 9 3.1 1.09 6.17
6 1.5 1.22 9.02 7 3.7 1.60 9.77 9 3.8 1.20 6.61

*6 1.6 1.28 9.33 7 3.9 1.63 9.96 9 4.6 1.29 7.00
*-6 1.7 1.33 9.63 7 4.2 1.67 10.22 9 10.0 1.50 8.03

6 1.8 1.39 9.94 7 4.4 1.69 10.37 10 0.2 0.08 4.01
6 1.9 1.44 10.23 7 4.6 1.71 10.51 10 0.4 0.17 4.04
6 2.0 1.49 10.52 7 7.5 1.87 11.66 10 0.7 0.29 4.13
6 2.1 1.53 10.81 7 10.0 1.92 12.05 10 1.3 0.51 4.40
6 2.2 1.57 11.09 7 15.0 1.96 12.35 10 1.9 0.70 4.76
6 2.3 1.61 11.36 8 0.2 0.11 4.52 10 2.3 0.80 5.02
6 2.4 1.65 11.62 8 0.3 0.17 4.55 10 2.6 0.87 5.21

06 2.5 1.68 11.87 8 0.5 0.28 4.63 10 3.3 1.00 5.61
6 2.6 1.72 12.11 8 0.7 0.39 4.76 12 0.3 0.10 3.76
6 2.7 1.75 12.34 8 0.9 0.50 4.91 12 1.3 0.40 3.99
6 2.8 1.78 12.57 8 1.1 0.60 5.10 12 1.7 0.51 4.14
6 2.9 1.81 12.78 8 1.3 0.69 5.30 12 3.2 0.81 4.75
6 3.0 1.83 12.99 8 1.6 0.82 5.63 12 5.0 1.00 5.31

06 3.1 1.86 13.19 8 1.7 0.86 5.75 14 3.5 0.72 4.39
6 3.2 1.88 13.38 8 1.9 0.93 5.97 16 1.0 0.22 3.57
6 3.3 1.90 13.56 8 2.1 1.00 6.20 16 4.0 0.68 4.20
6 3.4 1.92 13.73 8 2.2 1.03 6.32 16 7.5 0.88 4.69

7 0.3 0:14 5:08 8 2.3 1.06 6.43 20 2.5 0.39 3.60

70. .1 50
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Percentage points and cumulative probabilities of the F distri-

bution can be used, since Pr(z(vlv 2) < z) - Pr(F < exp(2z)), where

F has the F distribution with vl,v2 degrees of freedom. Thirty-one

z(v1 ,v2) distributions were used, with parameters as given in Table 4.

Table 4: z(vv 2) distributions

v 1  v 2  1 82 v2 v2  1 82 v 1  v2  1 82

1 2 0.85 5.40 3 4 0.21 3.76 5 10 0.31 3.48
1 3 1.13 5.87 3 5 0.35 3.80 5 20 0.49 3.64
1 4 1.25 6.14 3 10 0.63 4.07 6 6 0.00 3.38
1 5 1.31 6.32 3 30 0.82 4.40 10 10 0.00 3.22
1 10 1.43 6.66 3 100 0.89 4.55 10 20 0.20 3.22
1 30 1.50 6.89 4 4 0.00 3.59 10 40 0.32 3.29
2 3 0.38 4.19 4 10 0.44 3.69 10 100 0.44 3.37
2 5 0.69 4.47 4 20 0.61 3.88 20 20 0.00 3.10
2 10 0.92 4.87 4 40 0.69 4.02 20 40 0.14 3.11
2 20 1.03 5.12 4 100 0.74 4.12 30 40 0.05 3.06
3 3 0.00 3.81

9-

0 -. . .. . , , . .- . .. . ,. ""''< ''' ... " , ' " '' ' .. ."2''"L '''" ." .".' ' " ." " '-'' > ' '.-L
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Table 5: Q(),k) Distributions

k X
3 0. 0.30.31 82
3 0. 0.30.31.68 7.34

-4 1.8 1.5 0.4 0.3 1.91 8.68

4 1.5 1.5 0.8 0.2 1.74 7.71

K4 1.5 1.0 0.8 0.7 1.61 7.20
*4 1.2 1.2 1.2 0.4 1.57 6.73

*4 1.2 1.2 0.8 0.8 1.49 6.44

*4 1.2 1.0 0.9 0.9 1.45 6.19

5 1.8 1.8 0.6 0.5 0.3 1.77 7.93

5 1.2 1.2 0.9 0.9 0.8 1.32 5.67

*5 1.2 1.0 1.0 0.9 0.9 1.29 5.52
fS5 0.4 0.2 0.2 0.1 0.1 1.75 8.15

*6 0.3 0.3 0.2 0.1 0.05 0.05 1.57 6.89

*6 0.4 0.2 0.1 0.1 0.1 0.1 1.83 8.75

7 0.3 0.2 0.1 0.1 0.1 0.1 0.1 1.48 6.78

8 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 1.19 5.33

8 0.3 0.3 0.1 0.1 0.05 0.05 0.05 0.05 1.66 7.47

8 0.4 0.2 0.1 0.1 0.05 0.05 0.05 0.05 1.91 9.22

9 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 1.54 7.35

10 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 1.11 5.10

12 10.2 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 11.14 5.33
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2.6 Weibull Distributions (denoted by 'F' on Figure 1)

If the random variable X has pdf:

f(x) - ca'[(x-1)lc] exp[CC(x-1)lc)c] 8cx<-, c,a>O,

X is said to have the Weibull distribution with parameters c, a and 8

(see e.g. Johnson and Kotz (1970a, p. 250)). We here consider the

standard form, denoted by Weib (c), of the Weibull distribution,

obtained by setting a-i, -00, having pdf:

f(x) - exC- 1 (xpC-x) O<x<-,

and cdf:

F(x) - - exp[-x c ]  O<x<-.

The Weib (c) distribution has moments about the origin given by:

( r(r+ 1),
r c

where r x) - FO t x- I et dt. Computer evaluation of the gama function

is discussed in Section 3.1. The parameter values for the 30 Weib (c)

distributions used are displayed in Table 6.

Table 6: Weib (c) Distributions

cB 2  c B2

1 2 _ _ _ _1

1.04 1.89 8.26 1.60 0.96 4.04 5.50 0.32 2.96

1.08 1.78 7.64 1.68 0.88 3.82 6.00 0.37 3.04

1.10 1.73 7.36 1.76 0.81 3.64 7.00 0.46 3.19

1.12 1.69 7.10 1.90 0.70 3.38 8.50 0.56 3.39

1.16 1.60 6.64 2.10 0.57 3.13 10.00 0.64 3.57

1.20 1.52 6.24 2.20 0.51 3.04 15.00 0.79 4.00

1.24 1.45 5.88 2.50 0.36 2.86 20.00 0.87 4.27

1.30 1.35 5.43 3.00 0.17 2.73 30.00 0.95 4.58

1.40 1.20 4.84 3.50 0.03 2.71 50.00 1.02 4.88

1.50 1.07 4.39 4.00 0.09 2.75 75.00 1.06 5.04

•. . , • o . , . o . ._ . -. ° . . .
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2.7 Generalized Loxistic Distributions (denoted by 'G' on Figure 1)

If the random variable X has the pdf:

f(x) - p exp(x) [l+exp(x)]
- (p+l)

X has the generalized logistic distribution with parameter p, denoted

by GL(p). This distribution was studied by Dubey (1969) and has cdf:

F(x) - 1 - (l.Lxp(x))_P -M<x<CD.

Note that the logistic distribution is obtained by setting p equal to

one. The distribution has finite cumulants of all orders (see Johnson

and Kotz (1970b, p. 18)) given by:

I"( - 0(p);

K r - (r-l) (1) + (_,)r ,(r-l) (p), (r_2).

Six GL(p) distributions were used, with parameters as given in Table 7.

Table 7: GL(p) Distributions

1 82

1 0.00 4.20

2 0.58 4.33

3 0.77 4.59

4 0.87 4.76

7 0.99 5.01

15 1.07 5.21

2.8 Chi Distributions (denoted by 1H' on Figure 1)

The random variable X is said to have the chi distribution with

v degrees of freedom, denoted by X(v), if X2 is (central) chi-squared

with v degrees of freedom. Johnson and Welch (1939) give formulae

for the first six cumulants of X(v), as follow:

0m

• :- - . . . : .- . . .: -. ....: . .:: . -. , .. .. . ....:,... , . -.. , . : . . .. , ... - - .- ,- ,...- .. ......
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.- 2 r((v+1)12)/r(v12);

K V - 1 2.

IC K a3 1'
K (2v-1)a - 1.5 a2.

~4 2

KC5 K I 1(-2 4 + 3Q2);

K6 " 2(2v-l) 4 + 3a - 12(2v-1)0 2 
-15L3

where cg 1 - 2K -. X(v) has the pdf:

f(x) - [2v/2-1r(v/2)-I x v-l eXp(- X x2) O<x<-,
2

and cumulative probabilities can be obtained from cumulative chi-square

probabilities using Pr(x(v)<x) - Pr(i < x) - Pr(Y < x2), where Y is

chi-squared with v degrees of freedom. The parameters of the five

X(v) distributions used are shown in Table 8.

Table 8: X(v) distributions

v 
2

1 1.00 3.87

2 0.63 3.25

3 0.49 3.11

14 0.20 3.00

30 0.13 3.00

2.9 EDF Statistics for Goodness-of-Fit (denoted by 'I' on Figure 1)

We here consider the asymptotic distributions of the

Cramdr-von Mises statistic W2 , The Watson statistic U2 and the

Anderson-Darling statistic A2 . These statistics measure the discrepancy

between the empirical distribution function Fn (x) and the hypothesized

cdf F(x), where F(x) may contain unspecified parameters. Four cases

are considered here:

= /:+ " ' " .+ =+!'_. + . .. +. L t. =, ++ - .5. .. . . . .... - • -.. . .- .+ . ... .. - - .+.. -
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Case 1. F(x) is the normal distribution with a2 known, P estimated

by the sample mean 2.

Case 2. F(x) is the normal distribution with u known, a 2

estimated by n 2(x i)2.
n ±

Case 3. F(x) is the normal distribution with i and a2 estimated

by i and S2 = x -7)2.
n-i i

Case 4. F(x) - 1 - exp(-ex), x z 0 (the exponential distribution)

with 0 estimated by 1/2.

For all these cases, the asymptotic distributions can be expressed

as an infinite sum of weighted chi-squared variables each with one degree

of freedom.

Exact mans for all four cases of W2 , U2 and A2 and exact

variances for W2 and U2 are given by Stephens (1976). Weights were

obtained from Stephens (1976) and the method of Imhof (1961) was used

for computing cumulative probabilities. The percentage points obtained

were compared with those given by Durbin, Knott and Taylor (1975),

who independently used the same method. Higher cumulants were cal-

culated from the weights, as in section 2.4. Five distributions were

used: W2 , case 1; U2 , cases 2 and 4; A2 , cases 1 and 3. The parameters

and significance points for these distributions are given in Table 9.

Table 9: Goodness-of-Fit Statistics

a

Statistic a 0.85 0.90 0.95 0.975 0.99 0.995 0.9975

case 1 1.85 8.53 0.1165 0.1344 0.1653 0.1965 0.2381 0.2698 0.3017

U2, case 2 1.99 9.58 0.1052 0.1218 0.1507 0.1804 0.2208 0.2519 0.2836

U2, case 4 1.90 8.90 0.1116 0.1289 0.1588 0.1892 0.2300 0.2613 0.2930

A 2, case 1 1.85 8.72 0.7819 0.8937 1.0874 1.2847 1.5510 1.7561 1.9640

A2, case 3 1.64 7.52 0.5610 0.6318 0.7528 0.8742 1.0359 1.1592 1.2833

.,
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2.10 Thickened Range from a Uniform Distribution (denoted by 'J' on Figure 1)

Let X My X(2) X.(n)Xbe the ordered observations from a sample

of size n from the uniform distribution with pdf f(x) - 1, 0<x<l, and

let the "thickened" range W be defined by (David (1970, p. 146):n

Wn (X(n)-X(1)) + (X(n1 l)-( 2)) + ... + (X(np+l)-X(p)

where p = [ -, the greatest integer < n The cdf of W
"- 2" n

is given by Stephens (1972)):

F(vn ) - 1 - E i- [(Ki+Li)<i-. n>n+Lin<i-w >n lI, O<wnSpy
i-i

where <x> - x for x > 0, <x> = 0 for x _ 0. If n = 2p+l,

Li = 1 1,2,...,p;

r01
rii

Ki = -2 1  , 1 1,2,...,p,

r~i

while if n - 2p, we have:

Li M r2.,p1

r~i

_ L -0;

pp

Ki M- L{ E~ -L i ,,..,p-)

p r~lp-rj

Formulae for the first four central moments of W are similarly givenn

in Stephens (1972). Six W distributions were used in this study,
n

with parameters given in Table 10.

0P

• -- -~
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Table 10: W distributions

n 8 n

4 0.24 2.79 9 0.00 2.83

5 0.00 2.63 10 0.04 2.90

6 0.12 2.86 19 0.00 2.93

2.11 Resultants of Random Unit Vectors in Three Dimensions (denoted by

'K' on Figure 1)

Suppose n unit vectors are uniformly distributed in three dimensions;

that is, if Opi is a typical vector, the origin is fixed at 0 and pi

moves uniformly on the surface of the sphere with center 0 and radius 1.

Let X be the vector sum of the n vectors. The cdf of X is given in

Stephens (1964). Cumulants of Z X2 are given by Solomon and

Stephens (1975), as follows:

KI n;

K2= (n2-n) ;

K 8 n(n-)(n-2);
3 9

1 6 (5n4 - 33+52227 n )

4 45

The random variable X has range (O,n) and approximate significance

points xa of X are related to those for Z by xa - . This follows

from the relationship a - Pr(X<x ) Pr(ri<xa) a Pr(Z<x 2). Distributions

of vector resultants, denoted by RUV(n), are considered for 9 values

of n, with parameters given in Table 11.

I--

"" . " . , ... . .. ' -: , ,
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Table 11: RUV(n) distributions

nn

4 0.94 3.47 11 1.40 5.60

5 1.10 4.08 13 1.44 5.81

6 1.19 4.52 16 1.48 6.02

7 1.26 4.85 23 1.52 6.32

8 1.31 5.10

2.12 Extreme Value Distribution (denoted by 'L' on Figure 1)

The random variable X has the Type I extreme value distribution

if X has pdf:

f(x) - exp(-x - exp(-x)), --<x<-. (Johnson and Kotz 1970a, p.272).

The cdf is then:

Fez) - exp(- exp(-x)), -- <x<-,

and the cumulants are given by:

r (-i)r *(r-1), r>2. (Johnson and Kotz (1970a, p.278).r

Here we are considering only one distribution, with AT 1.14 and
* 1

B2 - 5.40.

2.13 Compound Laplace Distributions (denoted by 'M' on Figure 1)

The random variable X with pdf:

f(x) - (1 + 1x[)
"(a+l) --<x<M, 0>0,

has the (standardized) compound Laplace distribution (Johnson and Kotz

(1970a, p.32)). This distribution will be denoted here by L(a). The

L() distributions are symetric about zero and moments of order a or

greater do not exist. For r even and less than a,

U~r -a E (-l) (-r- (Johnson and Kotz (1970b, p.32)).
,00

L mi..; ., . '- -- . - : 7 - . : , : : ; : . ' ; .t i i ~ f i - "x 2 . " _' : -"" - .. . -" ."." . -" - " ' . " . . . .- . -. " . - -. -. - -
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The cdf, as given by Johnson and Kotz, was found to be incorrect.

The correct cdf is:

for x_0, F(x) - z(1-t)-(a+l) dt,

1 -

for x>O, F(x) - + 2(1+t)-(a) dt,

0

- 1 - (+x) -a.

2

The parameters of the 26 L(a) distributions used are displayed in

Table 12.

Table 12: L(a) Distributions

a IFT~ a1

7.4 0.00 13.86 11.4 0.00 9.44

7.6 0.00 13.39 12.4 0.00 9.01

7.8 0.00 12.97 13.0 0.00 8.80

8.0 0.00 12.60 13.6 0.00 8.62

8.4 0.00 11.96 14.4 0.00 8.41

8.6 0.00 11.68 15.4 0.00 8.19

9.0 0.00 11.20 17.8 0.00 7.80

9.4 0.00 10.79 19.5 0.00 7.60

9.8 0.00 10.44 21.6 0.00 7.40

10.1 0.00 10.21 24.4 0.00 7.20

10.4 0.00 10.00 39.0 0.00 6.70

10.7 0.00 9.81 52.0 0.00 6.51

1 11.0 0.00 9.64 100.0 0.00 6.25

4.
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2.14 Subbotin Distributions (denoted by 'N' on Fisure 1)

The random variable X has a Subbotin distribution with

parameter 6, denoted by S(6), if X has pdf:

f(x) [26 2 1 r( -il)f- *x(J 1x --<x<-, 6>0.

- This is the standardized form of the pdf given by Johnson and Kotz

-. (1970b, p.33). This distribution is symmetric about zero and has

finite moments of all positive orders, with

- 2 6r r((E2:)6)/r) (r even).

In order to make percentage point comparisons, the cdf of S(6) was

derived, as follows:

for x>0, F(x) - k 1exp(;2/6)dt, k= [2 -1 ,

1 + kJ exp( t 1 )dt,
2 02

6 1 2/ 6
- + 2 k y e-y dy,

0

1 .1 12/6

* where P(a,x) - [r(a)] -1  t • dt is the incomplete gamma function

0

ratio (see e.g. Abramowitz and Stegun (1965, p.260)).

For x<O, F(x) = 1 - F(-x).

Thirteen S(S) distributions were used, with parameters as shown in

Table 13.

b

. . . . . . . .
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Table 13: S(6) distributions

6 B2  6 82

0.1 0.0 1.82 1.8 0.0 5.21
0.3 0.0 1.97 1.9 0.0 5.59

0.6 0.0 2.32 2.2 0.0 6.92

1.3 0.0 3.68 2.4 0.0 7.97

1.42 0.0 3.99 2.6 0.0 9.20

1.6 0.0 4.53 2.8 0.0 10.62

1.7 0.0 4.86

2.15 Hyperbolic Secant Distribution (denoted by '0' on Figure 1

The random variable X has the hyperbolic secant distribution

(Johnson and Kotz (1970b, pp.15-16)) if X has the pdf:

f(x) - w sech x), -<x<".

This distribution has cdf:
1 -1 -

F(x) -.1 + ir tan-l(sinh (x)) - <x<-.

(Note that the formula given for F(x) in Johnson and Kotz (1970b,

p.15) is in error). The distribution is symmetric about zero and

central moments of even order are given by:

4w r~r + 1) S Cr +i1),

where the function O(n) - Z (-1) (2k + 1) is tabulated in
k-0

Abramowitz and Stegun (1965, p.812) to 18 decimal places for

n - 1(1)38. For this distribution, 47v' 0,
1 2=5.

2.16 Laplace Distribution (denoted by 'P' on Figure 1)

The random variable X has the standard form of the Laplace

distribution (also known as the double exponential distribution) if:

f W exp (-lxi); -- <x<-.

.f-*-
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- The cdf of this distribution is:

F(x) - exp(x) x < 0,

1
.. exp (-x) x 0 .

The distribution is symmetric about zero and central moments of even

order are given by:

- r! (Johnson and Kotz (1970b, p.23)).

Thus 0O and 82 6.
1 2

2.17 Cosine Distribution (denoted by 'Q' on Figure 1)

The random variable X has the cosine distribution if X has the

9 pdf:

f(x) " (2w)l (1 + cos x), -w < x < w.

The distribution was studied by Raab and Green (1961) who suggest

it as a possible substitute for the normal distribution. The cdf is

given by:
-- 1 , J2-1

F(x) + (21) (x + sin x), -w < x < w.

This distribution is symmetric about zero, odd-order moments are zero

and, for r even:

' E(Xr) (2r)-1 (xr + xr cos x) dx,

r 7r

- + (2w) - I xr

f ~r+1 2)

Since x cos x dx- xn sin x + n xn- cos x - n(n-l) f x n 2 .

cos x dx, and using x2 cos x dx - -4w, moments can be easily computed

for r - 2, 4, 6,..., successively. For this distribution, /07 0 and61

.2 - 2.41.

2 ..o"
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2.18 Generalized Gamma Distributions (denoted by 'R' on Figure 1)

The random variable X has the generalized gamma distribution

(standard form) if X has pdf:

f(x) - pi[r(v) ]-1 x exp(-xP), 0 < x < -, p 0 0, v > 0.

This distribution was studied by Stacy and Mihram (1965) and will be

denoted here by GG(p,v). The Weibull and chi distributions used in

this study, as well as exponential, gain and chi-squared distributions,

are special cases of this distribution. Moments are obtainable from:

- E(X r ) - r[(pv + r)/p]/r(v) I > -v.r p

Cumulative probabilities can be computed from the cdf:

F(x) - P(v,xp ) p > 0,

1 - P(V,xp ) p < 0,

where P(a,x) is the incomplete gamma function ratio, defined in section 2.14.

Thirty-six GG(p,v) distributions were used, with parameter values given

in Table 14.

Table 14: GG(pv) distributions

p v --1  2  p v 4 1  82

-7.0 1.5 1.64 8.90 3.0 0.4 0.52 2.74
-7.0 2.5 1.10 5.53 3.0 0.5 0.41 2.68
-6.0 1.5 1.80 10.37 3.0 1.5 0.09 2.81
-6.0 2.0 1.40 7.25 4.0 0.1 1.20 3.70
-6.0 3.0 1.04 5.24 4.0 0.2 0.60 2.57
-5.0 2.0 1.30 6.62 4.0 0.4 0.18 2.42
-5.0 3.0 1.13 5.70 4.0 0.5 0.08 2.48
-4.0 2.0 1.83 10.92 4.0 0.6 0.02 2.55
-4.0 2.5 1.49 7.94 5.0 0.1 0.88 2.87
-3.0 2.5 1.88 11.43 5.0 0.2 0.33 2.25
-3.0 4.0 1.24 6.31 6.0 0.2 0.13 2.14
-2.0 3.5 1.99 12.60 6.0 0.3 0.10 2.31
-2.0 4.0 1.74 9.96 6.0 0.4 0.23 2.50
-2.0 5.0 1.43 7.45 6.0 0.5 0.29 2.67
-2.0 5.5 1.33 6.77 6.0 5.5 0.28 3.07
3.0 0.1 1.68 5.55 7.0 0.1 0.48 2.18
3.0 0.2 1.00 3.46 7.0 0.2 0.03 2.14
3.0 0.3 0.70 2.92 7.0 0.5 0.42 2.83
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2.19 Burr Distributions (denoted by 'S' on Figure 1)

As an alternative to fitting a theoretical pdf to data and

integrating to obtain cumulative probabilities, Burr (1942) suggests

fitting a theoretical cdf. Among several possibilities, he considers

the cdf:

FWx - 1 - (1 + xc)- , 0 < x < -,c,k a_ 1.

This distribution, denoted here by Burr (c,k), has pdf:

f(x) - ck x C-1 + xl)- (k+l)  0 < x < -

Burr (1942) considers cumulative moments, M, defined by:

M J ( - F(x))dx - fxF(x)dx.

For the Burr (c,k) distribution, Mj - r(J 1 
-)r(k- i+)/[cr(k)]

j < ck - 1. The first four central moments can then be obtained

using the relations (Burr (1942, p.224)):

- -

u2 2M 1 - M2

3 3 2 -6M1M0  2M3 -

P14 -4M 3 -12M 2MA + 12MAM 0 M~

Twenty Burr (c,k) distributions are used here, with parameters displayed

in Table 15.

Table 15: Burr (ck) distributions

c k k c k2
1 2 1B2

2 3 1.91 12.46 6 4 0.02 3.17
3 2 1.59 10.81 7 1 1.46 10.36
3 3 0.92 5.13 7 8 0.30 3.14
3 6 0.48 3.38 8 1 1.22 8.34
4 2 0.96 5.94 8 2 0.19 3.74
4 3 0.51 3.87 9 1 1.06 7.22
5 2 0.64 4.63 9 2 0.11 3.67
5 4 0.12 3.19 10 1 0.94 6.51
6 2 0.43 4.11 10 2 0.04 3.65
6 3 0.12 3.36 10 3 0.21 3.42
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2.20 Log-gamma Distributions (denoted by 'T' on Figure 1)

Let Y have a gama distribution with pdf:

f(y) - [r(a)]-1 y0-1 e-y 0 < y < -, a > 0,

and let X I in Y. It can easily be shown that X has pdf:

f(x) - [r(a)]-1 exp(ax) exp(-exp(x)), -< x <

This distribution was considered by Olshen (1938). To evaluate the

moments of X, with distribution denoted by LG(a), we first obtain the

moment-generating function:

Mx(t) - Eexp(tX)],

- [r(a)]-i fexp[x(a + t)] exp(-exp(x)dx,

- [r(a)]-i  z +t-l exp(-z)dz, where z = exp(x),

- rCa + t)fr(a).

The cumulant-generating function is then:

K x(t) -. Zn[M x(t)],

-nr(a + t) - inr(a).

Thus, the LG(a) distribution has cumulants given by:

K - ) (a); r a 2.

Cumulative probabilities can be evaluated using the relationship

Pr(X < x) Pr(tn(Y) < x) - Pr(Y < exp(x)), where Y has the above

gama distribution. Five LG(a) distributions were used in this study,

with parameters as displayed in Table 16.

Table 16: LG(a) Distributions

a S
i. 0

2.5 0.69 3.93
3.0 0.62 3.76
4.5 0.50 3.49
7.0 0.39 3.31

10.5 0.32 3.20

,........ ,.. ..,. : .-.... , .?.. ,-. ... , .. , . .... . . .,.. - ... .. ,,. ... ...-. ,,:. . _ ... " - ? ." ,,., _ ,. _ = _- ,__. , : ? ,.- .- .
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3. COMPUTATIONAL METHODS

3.1 Computation of Moments and Cumulative Distribution Functions

In addition to the computational algorithms described in Section 2,

evaluation of several auxiliary mathematical functions was required for

the accurate computation of moments and cumulative distribution

functions. The function r(x) -f tx-1 e-t dt was evaluated using

the algorithm of Pike and Hill (1966). This function is necessary

in computing the moments of the noncentral t, Weibull, chi, Subbotin,

hyperbolic secant, generalized gamma and Burr distributions.

For computing the moments of the z, generalized logistic, extreme

value and log-gamma distributions, evaluation of the derivatives of

Ln[r(x)] was required. The digamma (psi) function is defined by

Sd s) dj,(x) 9 {.nr(x)]} - r,(x)/r(x). Similarly, 1P (x) - T ((x)

is called the trigam-a, tetragama, pentagamma, hexaga-u-a,

function for s = 1,2,3,4,... For the distributions described here,

*(x) is required for integer and half-integer values only; thus the

following formulae (Abramowitz and Stegun (1965, p.258)) are

sufficient:

n-1
*(n) - + k- , n-2,3,4,...

k-l

)= -Y- 2 fn 2

2 Ln 2 + 2(1 + + + 1 n-1,2,3,...

Here y = 0.5772156649... is Euler's constant, given to 25 decimal

* places in Abramowitz and Stegun (1965, p.3).

:+. o o o . .- .. o. o o . ~ . . - . o ,. . • . . - ° - .. .. , . . . * * . -

-/' .'-.- .'-. '- ., ',,'..', .... ... , .. . .\ - .- : . , - . , .-..-. . ".... . -,.-. .- - .. -. . - , .. - - - -.. °. .o.. -.
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Arbitrary derivatives of *(x) required here for integral values of

x only, were computed using the following formula from Abramowitz

and Stegun (1965, p.260):

(m)(1) (-1) M+l at C (re+l), a-1,2,3,....;

* )(n+l-) - (-1)M I! [-C(m -ll) + 1 + 1 + + --1 , n i 2 3 . .

m1,2,3

The Riemann zeta function C(n) - Z k - n is tabulated for n-2(1)42 in
k-l

Abramowitz and Stegun (1965, p.811).

The incomplete gaa function ratio, P(a,x) - [r(a)] - j ta-le- t dt,
J0

required for the computation of the Subbotin and generalized gam

cumulative distribution functions, was evaluated using the algorithm

of Bhattacharjee (1970). Chi-squared and gamma probabilities, required

for computation of chi and log-gamma cumulative probabilities, were

also computed using this algorithm. The algorithm of Majumder and

Bhattacharjee (1973) for computing I (a,b), the incomplete beta
x

function ratio, was used for computing cumulative probabilities of the

z distribution.

3.2 Interpolation for Cumulative Probabilities

Although tabulated significance points are available for the

noncentral F distributions and the goodness-of-fit statistics, direct

computation of cumulative probabilities is difficult. Thus inverse

interpolation for cumulative probabilities is required. Given m values

ai, in ascending order, and the corresponding significance points x,

, the approximate value of a corresponding to an intermediate value x,

can be computed using the n-point Lagrangian interpolation formula

for unequally spaced abscissa values:

-, . " " . " ,, • • ' " . , . . "-4J l: ' . '" ' , . ' , , ' , . , , "- : . ." . .'. ,.- "
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k+n- i

i-k

(x-x 1 ) (x-x 2 )... (x-xi_) -(x-xi+l)... (x-xnl) (x-x)

*where L -
whr i (x (x i-x ) (xi-x2) ..... (x i-x i-) (x i-xi+l) .. ( ix n-1) (xix n)

Here k is chosen to determine which known values will be used in the

interpolation; e.g., if n-4, k might be chosen so that two values of

xi lie on either side of x.
iI

Since interpolation using the above formula was found to be

occasionally inaccurate, regardless of the values chosen for n and k,

the work of Pearson (1968) (see also Pearson and Hartley (1972, pp.139-141)

was consulted. For the inverse problem of finding x for a given a,

where the xi values are known at standard significance levels xi,

Pearson suggested use of the logit transformation Yi- Ln(a/(l-Cti)).

He concluded that the logit transformation, in conjunction with the

Lagrangian interpolation formula, led to quite accurate results.

This method was applied here to the problem of determining a for

k+n-l
a given x. The formula y Z Z i(x) Y was used; then a was determined

i-k

by a - ey/(l+ey). The case n-4 was found to be sufficiently accurate;

where possible, k was chosen so that two of the x 's were less than

x and two greater than x.

6,
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